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Abstract. We consider a modulated discrete nonlinear Schrödinger (DNLS) model with alternating on-site
potential, having a linear spectrum with two branches separated by a ‘forbidden’ gap. Nonlinear localized
time-periodic solutions with frequencies in the gap and near the gap — discrete gap and out-gap breathers
(DGBs and DOGBs) — are investigated. Their linear stability is studied varying the system parameters
from the continuous to the anti-continuous limit, and different types of oscillatory and real instabilities
are revealed. It is shown, that generally DGBs in infinite modulated DNLS chains with hard (soft) non-
linearity do not possess any oscillatory instabilities for breather frequencies in the lower (upper) half of
the gap. Regimes of ‘exchange of stability’ between symmetric and antisymmetric DGBs are observed,
where an increased breather mobility is expected. The transformation from DGBs to DOGBs when the
breather frequency enters the linear spectrum is studied, and the general bifurcation picture for DOGBs
with tails of different wave numbers is described. Close to the anti-continuous limit, the localized linear
eigenmodes and their corresponding eigenfrequencies are calculated analytically for several gap/out-gap
breather configurations, yielding explicit proof of their linear stability or instability close to this limit.

PACS. 63.20.Pw Localized modes – 63.20.Ry Anharmonic lattice modes – 42.65.Wi Nonlinear waveguides

1 Introduction

The existence of spatially localized nonlinear excitations
in discrete models — ‘discrete breathers’ (DBs) — has at-
tracted much attention, as they can play a significant role
in condensed matter physics, biophysics, nonlinear optics,
etc. (for reviews see e.g. [1,2]). In particular, being local-
ized in space and typically stable, DBs can contribute to
energy and information transfer processes. For example,
breathers can trap energy during long periods of time and
cause non-exponential thermal relaxation in nonlinear lat-
tices [3]. By contrast, under certain conditions [4,5] DBs
can be rather mobile and become good energy carriers.

The presence of intrinsic structure of a medium can in-
fluence the DB properties. In particular, new types of DBs
— discrete gap breathers (DGBs) — appear with frequen-
cies inside the forbidden gaps in the linear waves spec-
trum. DGBs are the discrete analogues of gap solitons,
first discovered in a nonlinear optical medium with mod-
ulated refractive index [6]. Their specific features are due
to the existence of two neighboring bands of the linear
dispersion curve, with opposite signs of dispersion close
to a gap.

A classical example of a system with two bands in
the linear spectrum is a diatomic one-dimensional lattice.
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DGBs in diatomic lattices with nonlinear interatomic po-
tentials [Fermi-Pasta-Ulam (FPU) models] were studied
analytically as well as numerically within the rotating-
wave approximation, neglecting higher harmonics gener-
ation [7–11]. Later the existence of DGBs in diatomic
FPU lattices was proved rigorously [12,13]. Existence and
linear stability properties of DGBs in diatomic FPU chains
were also studied numerically for some particular values
of system parameters [14–16]. We recently [17] performed
a detailed analysis of DGBs in a diatomic lattice with
nonlinear on-site potential — Klein-Gordon (KG) model
— in the complete regime of continuation from the anti-
continuous (AC) to the continuous limit, and in partic-
ular we described the dynamics resulting from several
types of instability mechanisms (oscillatory as well as
non-oscillatory).

Very recently, much attention has been attracted to
modulated structures described by equations of discrete
nonlinear Schrödinger (DNLS) type, in particular within
nonlinear optics for the description of electromagnetic
waves in arrays of weakly coupled optical waveguides [18].
For such a system with even and odd waveguides of dif-
ferent widths, discrete gap [19,20] as well as multigap [21]
solitons were found. A related model with two coupled
DNLS-like equations describing a diffraction-managed
waveguide array was also studied recently, and found
to support different types of discrete gap solitons [22].
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Much recent attention has also been given to DNLS mod-
els in describing Bose-Einstein condensates (BECs)
trapped in optical periodic potentials [23,24]. For a re-
cent review on properties and applications of the DNLS
equations, see [25].

As the DNLS equations also approximate the small-
amplitude dynamics of weakly coupled KG-chains [26,27],
the DNLS discrete gap solitons should share many features
of DGBs in KG (and also FPU) lattices (henceforth they
will therefore also be referred to as DGBs). In particular,
in the continuum limit these models are described by the
same general class of coupled equations with exact gap
soliton solutions analyzed e.g. in [28,29].

The aim of the present study is to give a detailed and
thorough analysis of DGB properties in the modulated
DNLS model. Our motivation is twofold. First, we wish
to provide, for the benefit e.g. of experimentalists work-
ing in related areas (nonlinear optics, BECs), charts of
different types of instabilities etc., and information about
the parameter regimes where they are expected to be seen.
Particularly interesting is the possible observation of mov-
ing DGBs. Generally DBs can not freely propagate along
the system due to the existence of the effective periodic
Peierls-Nabarro (PN) potential (caused by the discrete-
ness of the system). However, in the diatomic KG model
we found [17] parameter regimes with increased DGB mo-
bility due to ‘exchange of stability’ between symmetric
and antisymmetric DGB configurations, and thus it is
of interest to look for similar effects in the modulated
DNLS models, proposing that the increased DGB mobility
should be directly observable in experiments.

Second, it was not carefully analyzed before, within a
fully discrete model, what happens with DGBs when their
frequencies approach gap boundaries. In continuous mod-
els, gap solitons delocalize and vanish at one gap bound-
ary, but bifurcate into a new type of excitations — out-
gap solitons — at the other boundary [30]. Out-gap
solitons have frequencies inside the linear spectrum, and
their structure can be viewed as a superposition of two
fields. One field has a ‘dark’ soliton shape with non-zero
amplitudes at the infinities and a localized decrease in
the center. The other field has either a ‘bright’ soliton
form with tails exponentially decaying to zero, or forms
a ‘bright soliton on a pedestal’ (‘anti-dark soliton’), simi-
lar to a ‘dark’ soliton but with a localized increase of the
amplitude in the center. Although out-gap solitons can ra-
diate energy through linear waves, they may still represent
long-lived localized excitations persistent to perturbations
(e.g. [31]).

Thus, analogously it is interesting to look for dis-
crete out-gap breathers (DOGBs) in discrete models, and
to study their stability and the bifurcations from DGBs
to DOGBs. This was not analyzed in earlier studies
of DGBs in KG or FPU models, partly due to technical
problems: since DGBs delocalize when approaching gap
boundaries, numerical computations become time con-
suming when increasing the system size to avoid boundary
effects. However, DNLS models are more conveniently an-
alyzed numerically, since time-periodic DGBs become ‘sta-

tionary’ solutions with purely harmonic time-dependence,
that can be removed by transforming into a rotating
frame.

Another important question concerns the possible exis-
tence of truly localized excitations with frequencies inside
the linear wave spectrum — analogues of ‘embedded’ soli-
tons (e.g. [32]) — and the nature of tails in such hypothet-
ical localized DOGBs. This issue is also most conveniently
analyzed with the modulated DNLS model.

Our study of the spatially binary modulated
DNLS model and the properties of its DGB and DOGB so-
lutions will be structured as follows. In Section 2 the
model is described, as well as the properties of its lin-
ear spectrum. In Section 3 we discuss the linear stabil-
ity analysis of stationary solutions, and in Section 4 we
review the numerical construction of breather solutions
from the anti-continuous limit, discussing some particu-
lar features of the continuation in coupling and frequency
of DGBs and DOGBs. In Section 5 we present numer-
ical and analytical results for linear stability properties
of different types of DGBs and DOGBs. Section 5.1 de-
scribes the continuation in coupling of DGBs, and we
compare the stability results with those obtained for the
diatomic KG chain [17]. In Section 5.2 we study the
transition from DGBs into DOGBs while changing the
breather frequency, describing the bifurcations which may
occur to DGBs when their frequency approach the gap
boundary, and furthermore penetrate the linear spectrum
as DOGBs. In Section 5.3 bifurcations of DOGBs with
different types of tails are described. We study the subse-
quent bifurcations of DOGBs into ‘on-top’ DBs (DOTBs)
with frequencies above the linear spectrum, and obtain a
general bifurcation picture of DOGBs with tails of differ-
ent wave numbers. We discuss the linear stability proper-
ties of the most important DOGB and DOTB solutions in
Section 5.4, and in Section 6 conclusions are made. Some
details of the analytical investigation of linear stability
properties of DGBs and DOGBs at small coupling are de-
ferred to Appendix A.

2 The model

The standard DNLS equation with cubic nonlinearity
reads:

i
dψn

dt
= λψn − C (ψn−1 + ψn+1 − 2ψn) + γ |ψn|2 ψn. (1)

When modelling an array of weakly coupled optical wave-
guides [18,19], ψn is the normalized amplitude of the elec-
tric field in the EM wave, propagating along the array. The
coefficient λ then characterizes the linear propagation con-
stant in the waveguide, C the coupling coefficient, γ the
effective nonlinear coefficient, and the time-like variable t
measures distance along the array. Here we consider pos-
itive γ, corresponding to ‘hard’ nonlinearity. The case of
‘soft’ nonlinearity (γ < 0) can easily be recovered by a
simple transformation, see footnote 2 below.

To introduce a gap parameter, one can modulate
any of the constants λ,C, γ (or two or three of them
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Fig. 1. The dispersion relation of linear waves (4).

simultaneously). We choose to modulate the coefficient λ,
corresponding in the optical model to a variation of the
width of even and odd waveguides (see e.g. [19]). Thus,
we put:

λ→ λn = 1 + (−1)nδ2, (2)

where the parameter δ defines the width ∆ of the gap in
the linear waves spectrum: ∆ = 2δ2 (see below).

The dispersion relation for solutions:

ψn =

{
A exp(iqn− iωt), n = 2k,

B exp(iqn− iωt), n = 2k + 1,

k = 0, 1, 2, ... (3)

of the linearized system (1) with λ in the form (2) reads:

ωo,a = 1 + 2C ±
√
δ4 + 4C2 cos2(q), (4)

where indices o and a stand for the upper (‘optic-like’)
and lower (‘acoustic-like’) branches of the spectrum1. It
possesses a gap at the wave number q = π/2 (see Fig. 1).
The gap boundaries are defined as:

ω2,1 = 1 + 2C ± δ2. (5)

The ratio of the amplitudes A and B in a linear wave (3)
is defined by its frequency ω:

A

B
=

√∣∣∣∣ω − ω1

ω − ω2

∣∣∣∣· (6)

In linear waves with frequencies belonging to the up-
per branch of the spectrum (ω > ω2), amplitudes in
even waveguides (A) are always higher than in odd wave-
guides (B), while for frequencies in the lower branch
(ω < ω1) the odd waveguides are dominant. Therefore,
the sub-field of even (odd) waveguide amplitudes can be
referred to as the upper (lower) band sub-field, respec-
tively. With an analogy to a diatomic chain, even and odd

1 Note however that also for the “acoustic-like” branch the
dispersion is quadratic and not linear for small q.

waveguides correspond to light and heavy atoms, and will
therefore be referred to as ‘light’ and ‘heavy’ sites, respec-
tively.

Another type of modulated DNLS model is obtained
by multiplying the left-hand side of equation (1) with mn,
defined analogously to λn in (2). This model, correspond-
ing to simultaneous modulation of all constants in (1),
can be considered as a simplified model of a diatomic
lattice (mn playing the role of atom masses), neglecting
higher harmonics generation. As shown in [33] for the
diatomic FPU model, the effect of higher harmonics on
DB properties is often rather negligible, although addi-
tional instabilities and bifurcations generally may appear
for large values of the coupling and/or large-amplitude
oscillations (e.g. [27]). Investigating numerically breather
properties in the two modulated DNLS models we have
found qualitatively similar results, and therefore we focus
our discussion only on model (1) with coefficients λ as
defined in (2).

We denote the system size (the number of waveguides)
with N (n = 1, 2, ..., N) and impose periodic boundary
conditions ψN+1 ≡ ψ1, ψ0 ≡ ψN . The DNLS equations (1)
are then the Hamiltonian equations with the Hamiltonian:

H({iψn}, {ψ∗
n}) =

N∑
n=1

(
C |ψn+1 − ψn|2 + λ |ψn|2 +

γ

2
|ψn|4

)
. (7)

In what follows we put γ = +1 in equations (1, 7) (without
loss of generality, since varying γ is equivalent to rescal-
ing ψn).

3 Stationary solutions and linear stability

Stationary solutions of equations (1) have the form:

ψn(t) = φne
−iωbt, (8)

with time-independent amplitudes φn, where ωb is the ex-
citation frequency. DGBs have frequencies ωb lying inside
the gap (5), so that ω1 < ωb < ω2. For DOGBs one
has ωb > ω2, while ‘on-top’ breathers (DOTBs) have fre-
quencies above the linear spectrum, ωb > ωu, where

ωu = 1 + 2C +
√
δ4 + 4C2. (9)

To analyze the linear stability of a particular solu-
tion {φ(0)

n }, we add a small perturbation {εn(t)} to it:

ψn(t) =
(
φ(0)

n + εn(t)
)
e−iωbt, (10)

and linearize the equations (1):

i
dεn
dt

= (λn + 2C − ωb) εn − C (εn−1 + εn+1)

+ 2γ
∣∣∣φ(0)

n

∣∣∣2 εn + γ
(
φ(0)

n

)2

ε∗n. (11)
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Expanding εn(t) in real and imaginary parts, εn(t) =
αn(t)+iβn(t), equations (11) can, for real solutions {φ(0)

n },
be written in matrix form [34]:

({α̇n}
{β̇n}

)
=

(
0 L0

−L1 0

)({αn}
{βn}

)
, (12)

with L0 and L1 defined as follows:




L0βn ≡
[
λn + 2C − ωb + γ

(
φ

(0)
n

)2
]
βn

−C (βn−1 + βn+1) ,

L1αn ≡
[
λn + 2C − ωb + 3γ

(
φ

(0)
n

)2
]
αn

−C (αn−1 + αn+1) .

(13)

The solution {φ(0)
n } is linearly stable if and only if the per-

turbation {εn(t)} remains bounded in time, i.e. if and only
if all eigenvalues iωe of the matrix in (12) are imaginary.

Note that writing the general solution of (11) as

εn(t) =
1
2

(an + bn) e−iωet +
1
2

(a∗n − b∗n) eiω∗
e t (14)

leads to the following set of algebraic equations (e.g. [27]):

{ L0bn = ωean,
L1an = ωebn,

(15)

with L0 and L1 defined above (13). Consequently, the con-
dition of the linear stability of a solution {φ(0)

n } is that all
the eigenfrequencies ωe, obtained from (15), are real.

If ωe is a real eigenfrequency of (15) and (an, bn) is
the corresponding real solution, then iωe is an eigenvalue
of (12) with eigenvector ({αn ≡ an}, {βn ≡ ibn}). There-
fore with each real eigenfrequency ωe > 0 one can asso-
ciate a Krein signature κ(ωe) (e.g. [27,35] and references
therein):

κ(ωe) = sign
∑

n

anbn. (16)

For DGBs with frequencies inside the gap, eigenmodes
with positive (negative) κ correspond to excitations inside
even (odd) waveguides in the AC limit C → 0. Physically,
the Krein signature is the sign of the Hamiltonian energy
carried by the corresponding eigenmode (e.g. [35,36]).

4 Construction of breather solutions

The main idea for the numerical methods used to ob-
tain breather solutions, based on the proof of their ex-
istence [1,37], is to perform numerical continuation of an
exact breather solution, known for some particular pa-
rameter values, to other, arbitrary, values of these pa-
rameters. For stationary solutions (8), equation (1) with

modulated coefficient λ (2) reduces to a set of algebraic
equations (γ = 1)2:

[
1 + (−1)nδ2 − ωb

]
φn

− C (φn−1 + φn+1 − 2φn) + |φn|2 φn = 0, (17)

and solutions can be found by Newton schemes (e.g. [38]).
Usually breather solutions at C = 0 (AC limit) are

taken as initial solutions and continued to non-zero values
of C. At C = 0 one has an array of uncoupled wave-
guides. Hence, in the AC limit, for real solutions each am-
plitude φn should be taken from the set φn ∈ {0,±An},
with:

An =
√
ωb − λn. (18)

Consequently, to each breather solution one can associate
a corresponding coding sequence, where we use symbol
notation with up- and down-arrows for +An and −An,
respectively. To make the intrinsic structure of the so-
lutions more clear, we use different sets of symbols for
odd and even amplitudes (lower and upper band sub-
fields): {O ⇑⇓} and {0 ↑↓}, respectively.

Note, however, that these coding sequences are not
unique for a given solution. Indeed, one can construct a
DGB with some particular coding sequence and then con-
tinue it in frequency up to values above the upper gap
boundary ωb > ω2. Above the gap this solution will have
another coding sequence if continued to C = 0, though
the continuations in frequency and coupling can be done
smoothly without any true bifurcations to other solutions.
Similar effects were observed for second-harmonic pene-
tration into a phonon band for breathers in a monoatomic
Klein-Gordon lattice [39]. In fact, one should distinguish
two types of coding sequences: those corresponding to the
AC limit inside and above the gap of the linear spectrum
(‘gap’ and ‘out-gap’ coding sequences, respectively)3. We
will use the superscripts G or O in coding sequences to
indicate whether they are ‘gap’ or ‘out-gap’, respectively.

Restricting to solutions with spatial symmetry or anti-
symmetry with respect to the center, Nc = Int(N/2) + 1,
the coding sequences can be simplified by omitting the
codes for sites n = 1, 2...Nc − 1, and using subscripts S
or A to mark whether a breather has symmetric or an-
tisymmetric spatial configuration respectively. As follows
from equations (18, 2), in the case of hard nonlinearity
(γ > 0 in Eq. (1)), the simplest symmetric DGBs are
centered on a ‘heavy’ (odd) site with non-zero amplitude,
while the simplest antisymmetric DGBs are centered on a
‘light’ (even) site with zero amplitude and with non-zero
amplitudes of opposite signs on two neighboring ‘heavy’
sites.

2 Note that the case of soft nonlinearity γ = −1 is also
covered through the transformations φ′

n = (−1)nφn, ω′
b =

2 + 4C − ωb, δ′2 = −δ2. Essentially, this reverses the roles
of upper/lower bands and even/odd sites.

3 The existence of two types of coding sequences is connected
to the existence of two types of AC limits. In general, the
AC limit ωb/C → ∞ can be reached either by taking C = 0 or
ωb → ∞. These are not equivalent for modulated systems.
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Fig. 2. Symmetric (a) and antisymmetric (b) DGBs at non-zero coupling. Circles (triangles) denote ‘heavy’ (‘light’) amplitudes.

Note that the structure of the linear spectrum, and
in particular the gap boundaries ω1,2 (5), depends on the
coupling C (although the gap width ∆ = 2δ2 is inde-
pendent on C). Thus, if one constructs a DGB with fre-
quency ωb inside the gap at some particular value of C and
tries to continue it versus C at fixed frequency, it can reach
one of the gap boundaries in the process of continuation.
Consequently, a DGB can disappear (on the lower bound-
ary) or transform into a DOGB (on the upper boundary)
while continued in coupling. The same effect can occur
for DOGBs, as the frequency may reach that of the linear
wave corresponding to its tail. To avoid this problem we
fix not the breather frequency, but the frequency detuning:

∆ω ≡ ωb − ωo(q, C), (19)

for the continuation in coupling. Here ωo(q, C) is the fre-
quency of the linear wave (4) with the same wave number q
as that of the breather tail, belonging to the upper branch
of the spectrum. All stationary DGB solutions have tails
with wave number q = π/2, so that the frequency de-
tuning (19) is equal to ∆ω = ωb − ω2(C) < 0 for such
breathers.

Hence, the frequency detuning ∆ω (19) is a more con-
venient parameter than the frequency ωb, and it can be
considered as the only dynamical parameter of station-
ary DGBs and DOGBs. Note also that although equa-
tion (17) for stationary solutions has three parameters (ωb,
δ2, C), only two are independent, since varying the third
parameter is equivalent to rescaling ψn. For instance,
one can choose as independent parameters: δ2/C — the
‘modulation’ parameter, and ωb/C — the ‘discreteness’
parameter. In what follows we fix the ‘gap’ parameter δ2
and investigate the properties of stationary solutions while
varying the frequency detuning ∆ω (19) and the cou-
pling C.

5 Numerical results

We here present the results of numerical continuation and
stability analysis of DGB and DOGB solutions.

5.1 Stability of gap breathers

At frequencies inside the gap, ω1 < ωb < ω2, only ‘heavy’
(odd) amplitudes φn can be non-zero in the AC limit (18).
Thus, there are two basic configurations of DGB solutions
with coding sequences {⇑ (0O)}G

S and {0 ⇑ (0O)}G
A (codes

in parenthesis are repeated), representing a symmetric
DGB centered on a ‘heavy’ site with non-zero amplitude,
and an antisymmetric DGB centered on a ‘light’ site with
zero amplitude, respectively (Fig. 2). Since DGBs have ex-
ponentially decaying tails of wave number q = π/2, neigh-
boring even amplitudes, as well as neighboring odd am-
plitudes, have opposite signs. In addition, there is a phase
shift of ‘light’ (even) amplitudes in the center (Fig. 2),
known from gap solitons in the continuum limit (e.g. [29]).

In Figure 3 we show the results of stability analysis of
symmetric and antisymmetric DGBs for the continuation
in coupling at three different frequency detunings (19):
in the upper half of the gap, in the gap center, and in
the lower half of the gap, respectively. The stability eigen-
values can be divided into two groups, corresponding to
spatially localized and extended eigenvectors, respectively.

The ‘extended’ eigenvalues are independent on the
breather spatial configuration and would be obtained also
for the system without breather. They correspond to ex-
tended excitations of the upper and lower band sub-fields
and form two bands iω+ and iω− with positive and nega-
tive Krein signatures, respectively:

iω+ = i (ωo(q) − ωb) ,
iω− = i (ωb − ωa(q)) . (20)

Here ωo(q) and ωa(q) are the frequencies of linear waves
(Eqs. (3, 4)) with wavenumbers q (defined by the system
size), corresponding to the upper and lower bands, respec-
tively. In the limit of an infinite system the extended eigen-
values will have continuous spectrum. The boundaries of
these bands are determined by the DGB frequency ωb and
the boundaries of the lower and upper bands of the lin-
ear spectrum ω1,2, ωu,d (see Fig. 1). Defining the devi-
ation α ≡ ∆ω + δ2 of a DGB frequency from the gap
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Fig. 3. Imaginary parts of eigenvalues iωe of (12) for symmetric (a), (c), (e) and antisymmetric (b), (d), (f) breathers at
different values of the frequency detuning (19): (a), (b) ∆ω = −0.75δ2 (upper half of the gap); (c), (d) ∆ω = −δ2 (middle of the
gap); (e), (f) ∆ω = −1.25δ2 (lower half of the gap). Light-grey crosses correspond to eigenvalues with positive Krein signature,
dark-grey triangles to eigenvalues with negative Krein signature, and black stars to unstable eigenvalues. In all cases the system
size N = 242 and the gap parameter δ2 = 0.2.

center: ωb = 1 + 2C + α (−δ2 ≤ α ≤ δ2), yields

δ2 − α ≤ ω+ ≤
√
δ4 + 4C2 − α,

δ2 + α ≤ ω− ≤
√
δ4 + 4C2 + α. (21)

Thus, having the same shape, the two bands of extended
eigenvalues are shifted by 2α with respect to each other.

While increasing the coupling constant C, these bands
broaden and at a certain value C0,

C0 =
√
δ2 |α| + α2, (22)

they overlap. (In the gap center α = 0, the two bands
coincide as shown in Figs. 3c and 3d.) The overlapping of
the bands will lead to collisions of extended eigenvalues
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with opposite Krein signatures with generation of insta-
bilities (see Fig. 3). For larger systems more collisions will
occur, as the bands become more ‘dense’, but the instabil-
ities produced will become weaker and should completely
disappear in the limit of an infinite system [40]4.

The localized eigenvalues play a more important role,
as their collisions with each other or with extended eigen-
values can produce strong instabilities independent on the
system size. The corresponding eigenvectors are localized
around the breather when the eigenvalues lie outside the
extended bands. There are two types of localized eigen-
values, bifurcating from the top of the extended band
with κ = +1 (P1, P2, P3, ... in Fig. 3a), and from the
bottom of the band with κ = −1 (N1, N2), respectively.
In addition, there is also the ‘phase’ mode with iωe ≡ 0,
whose eigenvector is the same as the breather solution,
and associated with the phase rotation of the breather.

The eigenvector corresponding to the eigenvalue N1
has symmetry opposite to the DGB. Colliding with its
complex conjugate a real instability is produced, con-
nected to the ‘exchange of stability’ between symmetric
and antisymmetric DGBs5 [Peierls-Nabarro (PN) mode,
see below]. The other eigenvalue bifurcating from the neg-
ative Krein signature band, N2, has an eigenvector with
same symmetry as the breather. For DGB frequencies in
the upper half of the gap, both N1 and N2 eigenvalues
penetrate the positive Krein signature band, yielding oscil-
latory instability (Fig. 3a, and N2 in Fig. 3b). In particu-
lar regimes the N2 eigenmode can collide with its complex
conjugate producing real instabilities, connected to tran-
sitions from ‘discrete-like’ to ‘continuous-like’ DGBs [17]
(see Sect. 5.2.)

The eigenvalues P1, P2, P3, ... bifurcate one by one
when increasing the coupling, corresponding alternately
to symmetric or antisymmetric eigenvectors. The num-
ber of these localized modes increases as, with increas-
ing coupling, the central part of the DGB will occupy a
larger number of sites. These eigenvalues can also pro-
duce oscillatory instabilities in the upper half of the gap,
penetrating the extended band with opposite Krein signa-
ture (see Figs. 3a and 3b). Unlike other eigenvalues, P1
and P2 (and for the antisymmetric DGB also P3) can
bifurcate from the extended band immediately when C
becomes non-zero. Analysis shows, that for each of these
eigenvalues there is a critical value of the breather fre-
quency detuning ∆ωcr (in the lower half of the gap for P1
and P2), specific for symmetric and antisymmetric DGBs,
above which they stay outside the band (i.e., the eigen-
modes are localized) at arbitrarily small non-zero coupling
(see Appendix A for details). The deviation of these eigen-
values from the top of the extended band is proportional
to C2 at small values of C (see Eqs. (32, 33)). By contrast,
below ∆ωcr the eigenvalue is inside the band at small C.

4 This is true generically for localized breathers, while for
non-localized solutions (e.g. breathers with extended tails)
such instabilities survive also in the infinite-size limit (e.g. [27]).

5 Here ‘stability’ only means w.r.t. the PN-mode, since Krein
instabilities may exist also in this regime (see Figs. 3a and 3b).

Similar structure of extended and localized eigenval-
ues was reported for the diatomic KG model [17]. How-
ever, an important difference is that in the modulated
DNLS model, DGBs with frequencies in the lower half
of the gap do not possess any oscillatory instability asso-
ciated with localized eigenvalues. Indeed, for frequencies
in the lower half of the gap (α ≤ 0 in (21)), the bottom
of the extended band with κ = −1 is below the bottom of
the κ = +1 band for all values of C (see Figs. 3c–3f), so
the N2 eigenvalue does not penetrate the extended band.
For similar reason the localized eigenvalues P1, P2, P3...
do not penetrate the extended band, as the top of the
κ = +1 band is above the top of the other band for all C.
By contrast, in the diatomic KG model DGBs possess os-
cillatory instabilities associated with localized eigenmodes
of P -type both in the upper and lower halves of the gap for
larger values of the coupling, as the bands have different
shapes [17].

The two types of oscillatory instabilities of DGB solu-
tions were recently observed also in [20], where the stabil-
ity of DGBs was analyzed for a continuation in frequency
at a particular value of coupling within a similar model
of a coupled waveguide array. The P1, P2, P3, ... insta-
bilities can be associated with external resonances, as the
frequencies of the corresponding localized modes are above
the linear spectrum. By contrast, the N2 instability can
be associated with internal resonances, as the frequency
of this mode is inside the gap [20].

The real instability N1 was also observed in [20] for
the antisymmetric DGB solution, which was shown to be
unstable at all frequencies inside the gap for the partic-
ular used value of coupling. However, we emphasize that
in fact both symmetric and antisymmetric DGBs can pos-
sess this type of instability (see Fig. 3) at different val-
ues of coupling. This exchange of stability between sym-
metric and antisymmetric modes is very important for
breather mobility issues [5,17]. Generally, for the anti-
symmetric DGB at small C > 0 there are two localized
modes associated with antisymmetric and symmetric cou-
pled oscillations in the two ‘heavy’ sites with non-zero
codes. The former is the ‘phase’ mode with iωe ≡ 0, while
the latter is the N1 mode which becomes unstable im-
mediately when C > 0 (see Figs. 3b, 3d and 3f and Ap-
pendix A). Thus, antisymmetric DGBs always possess a
real instability at small C, with a growth rate proportional
to C that can be obtained analytically (Tab. 1, eigenmode
(N1, A,G)).

5.2 Transition from DGB to DOGB solutions:
discrete- and continuous-like breathers

To study in details the transformation of DGBs
into DOGBs, we perform the continuation in the fre-
quency detuning (19) of the breather solutions, at fixed
coupling. We focus our attention on symmetric breather
configurations.

In Figure 4 the profile of a symmetric breather is shown
for the continuation in frequency detuning, at fixed cou-
pling, from a value inside the gap to a value above the
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Table 1. Localized eigenmodes at small coupling (see Appendix for explanation of notation). Eigenfrequencies are given at
lowest significant order of C, with the notations: ∆1 ≡ 2δ2 + ∆ω (i.e. frequency detuning measured from the lower gap edge),

µ(±) ≡
[
16δ4 + ∆2

1 ±
√

128δ8 + ∆4
1

]
/
[
4∆ω2δ2

]
. Schematic eigenvector structures are shown for the central part; higher arrows

denote sites with nonzero oscillations at C → 0.

Eigenmode Schematic eigenvector structure Eigenfrequency ωe ∆ωcr

(P1, S, G) ...O0 ⇑ ↑ ⇓ ↑ ⇑ 0O... −∆ω + 2C2
(
4δ2 + ∆ω

)
/∆ω2 −1.56δ2

(P2, S, G) ...O0 ⇑ ↓ O ↑ ⇓ 0O... −∆ω + C2
(
4δ4 + ∆2

1

)
/
[
2δ2∆ω2

] −1.1δ2

(P1, A, G) ...O0 ⇓ ↑ ⇓ ↑ ⇓ ↑ ⇓ 0O... −∆ω + C2µ(+) −1.85δ2

(P2, A, G) ...O0 ⇓ ↑ ⇓ 0 ⇑ ↓ ⇑ 0O... −∆ω + C2
(
12δ4 + 4∆ωδ2 + ∆ω2

)
/
[
2∆ω2δ2

] −1.44δ2

(P3, A, G) ...O0 ⇓ ↑ ⇓ ↑ ⇓ ↑ ⇓ 0O... −∆ω + C2µ(−) −0.86δ2

(N1, A, G) ...0O ↑ ⇑ ↑ ⇑ ↑ O0... i2C
√

∆1/
√−∆ω −2δ2

(P1, S, O) ...O0 ⇓ ↓⇑↓ ⇓ 0O...
{
6
√

∆ω∆1C
}0.5

0

(P2, S, O) ...O0 ⇑ ↓ O ↑ ⇓ 0O...
{
2
√

∆ω∆1C
}0.5

0

(P1, A, O) ...0O ↑⇓ 0 ⇑↓ O0...
{
4
√

∆ω∆1C
}0.5

0

(P2, A, O) ...O0 ⇑ ↓⇑ ↑ ⇑↓ ⇑ 0O...
{
4
√

∆ω∆1C
}0.5

0

(P0, A, O) ...O0 ⇓ ↑⇑ ↑ ⇑↑ ⇓ 0O... C
√

2∆2
1 − ∆ω2/

√
∆ω∆1 0

(N0, A, O) ...0O ↓ ⇑ ↑ ⇑ ↓ O0... ∆ω + O(C4) 0

n-Nc

φ ∆ω
n
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Fig. 4. Amplitudes of the central part of a breather for the con-
tinuation in frequency detuning ∆ω from DGB (∆ω = −0.6δ2)
to DOGB (∆ω = δ2). N = 50, δ2 = 0.1 and C = 0.02.

linear spectrum. At the upper gap boundary (∆ω = 0) the
DGB transforms into a DOGB with non-zero tails. The
structure of this DOGB is qualitatively the same as that of
a DGB (see Fig. 2a) but with non-zero asymptotes of the
upper band sub-field (‘light’ amplitudes)

∣∣φ(u)
∣∣ ∼ √

∆ω,
while the lower band sub-field (‘heavy’ amplitudes) still
exponentially decays to zero. The wave number of the tails
in this DOGB is q = π/2 as for a DGB, and the corre-
sponding coding sequence is {⇑ (↑ O ↓ O)}O

S . In what
follows we will call this configuration a ‘normal’ DOGB.

In Figure 5 we show the dependencies of Hamilto-
nian H (7) on frequency detuning ∆ω (19), for contin-
uation of symmetric breathers from ∆ω = −2δ2 (bottom
of the gap) to ∆ω = 0.1δ2 (inside the upper band) at
different fixed values of the coupling. At the upper gap
boundary ∆ω = 0, a DGB {⇑ (0O)}G

S transforms into a
DOGB {⇑ (↑ O ↓ O)}O

S , the energy of which rapidly grows
with frequency due to the tails.

0

0.5

1

1.5

2

2.5

3

-0.2 -0.15 -0.1 -0.05 0

H

∆ω
Fig. 5. The dependencies of the Hamiltonian energy H (7) of
a symmetric breather on its frequency detuning ∆ω (19) for
different values of the coupling (from top to bottom): C = 0.17,
C = 0.15 and C = 0.1. In all cases δ2 = 0.1 and N = 242.

Increasing the coupling, the dependence H(∆ω) can
become non-monotonous (e.g. C = 0.17 in Fig. 5), which
is connected to an additional transition from discrete- to
continuous-like breather solution [17]. Close to the AC
limit (C � 1 or ωb � ω1), the lower-band sub-field of
the breather is well localized, and the two peaks of the
upper-band sub-field (to the left and to the right of the
breather center, see Fig. 2) are situated on the ‘light’ sites
nearest to the breather center. We call this configuration
‘discrete-like’ breather. By contrast, close to the continu-
ous limit the lower-band sub-field extends over many lat-
tice sites, and the peaks of the upper band sub-field are
located far from the breather center — ‘continuous-like’
breather. Consequently, the continuation of a breather
from the anti-continuous to the continuous limit is always
accompanied with an infinite number of tranformations,
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Fig. 6. Transitions from ‘discrete-like’ (larger ∆ω) to ‘continuous-like’ (smaller ∆ω) breathers. The dependencies of breather
Hamiltonian energies H (7) on frequency detunings ∆ω (19) at different fixed values of the coupling: (a) C = 0.169; (b) C = 0.18;
(c) C = 0.185; (d) C = 0.191; (e) C = 0.192; (f) C = 0.28. The insets in (a), (b), (d) and (e) show the structure of ‘discrete-like’
DGB (C = 0.169, ∆ω = −0.05), ‘continuous-like’ DGB (C = 0.18, ∆ω = −0.1), ‘discrete-like’ DOGB (C = 0.191, ∆ω = 0.01,
lower curve) and ‘continuous-like’ DOGB (C = 0.192, ∆ω = 0.01, middle curve), respectively. In all cases, δ2 = 0.1 and N = 242.

where each transformation corresponds to a ‘jump’ of up-
per band sub-field peaks from positions n = Nc±n0 to po-
sitions n = Nc±(n0+2) with n0 = 1, 3, 5, ... for symmetric
breathers and n0 = 2, 4, 6, ... for antisymmetric breathers.

In Figure 6 different regimes of transitions from
‘discrete-like’ breathers with peaks of the upper band sub-
field at n = Nc ± 1 (see insets in Figs. 6a and 6d) to
‘continuous-like’ breathers with peaks of the upper band
sub-field at n = Nc ± 3 (insets in Figs. 6b and 6e) are
demonstrated in the plane (H,∆ω) for continuation in
frequency at different fixed values of coupling. For small
enough C, a ‘discrete-like’ breather smoothly transforms
into a ‘continuous-like’ one while decreasing the frequency
towards the lower gap boundary (∆ω → −2δ2). At a cer-
tain critical coupling C1 the derivative ∂H/∂ωb turns to
zero at the transition point (see Fig. 6a). Further increase
of the coupling will lead to the appearence of a part of
the H(∆ω) curve with a negative slope in the transi-
tion region (see Fig. 6b). As a consequence, discrete-like
and continuous-like breathers will possess real instabilities
of the Vakhitov-Kolokolov type [41] near the transition
point. These instabilities are produced by the collisions of
the N2 localized eigenmode with its complex conjugate
(see Sect. 5.1).

At the second critical value C2 > C1 the slope of the
‘unstable’ part of the curve H(∆ω) will become vertical,
and for C > C2 it bends over and the dependence H(∆ω)
becomes multi-valued in the transition region (Fig. 6c and
lower curve in Fig. 6d). In this regime the transition be-
tween discrete-like and continuous-like breathers is possi-
ble only via an intermediate solution.

For large enough coupling, multi-breather solutions get
involved in the transition from discrete-like to continuous-
like breathers. In the upper right part of Figure 6d the
bifurcation loop for the breathers {⇑ 0 ⇓ (↓ O ↑ O)}O

S
(lower part of the loop) and {⇑↓⇓ (↓ O ↑ O)}O

S (upper
part) is shown. Being constructed at frequencies above
the linear spectrum, these DOGBs were continued in fre-
quency down to the values inside the gap6, where they
bifurcate with each other close to the bifurcation point of
the continuous-like DGB with the intermediate breather.
When the coupling reaches a third critical value C3, these
two bifurcation points coincide (Fig. 6e), and the four bi-
furcating solutions are identical in that point. For C > C3

the bifurcation picture drastically changes. The curves
for a continuous-like DGB {⇑ (0O)}G

S and for a DOGB
{⇑ 0 ⇓ (↓ O ↑ O)}O

S coincide, so that a single-breather so-
lution DGB {⇑ (0O)}G

S can be smoothly continued up to
frequencies inside the linear spectrum (upper solid line in
Fig. 6e). At the same time the curves for the intermediate
breather, connecting the continuous-like and discrete-like
DGBs, and for the DOGB {⇑↓⇓ (↓ O ↑ O)}O

S also coincide
(dashed line in Fig. 6e). Therefore, the discrete-like DGB
{⇑ (0O)}G

S connected to the DOGB {⇑ (↑ O ↓ O)}O
S now

bifurcates with the DOGB {⇑↓⇓ (↓ O ↑ O)}O
S at frequen-

cies inside the gap (lower solid line in Fig. 6e).
Further increase of C will lead to the movement of

the bifurcation point of the discrete-like DGB {⇑ (0O)}G
S

and the DOGB {⇑↓⇓ (↓ O ↑ O)}O
S towards the upper

6 Note that these two solutions cannot be continued in fre-
quency inside the gap at small values of coupling. Therefore, it
is impossible to associate any ‘gap’ coding sequences to them.
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Fig. 7. Transitions from ‘discrete-like’ to ‘continuous-like’ out-gap breathers (see text for explanations). The dependencies of
breather Hamiltonian energies H (7) on the coupling C at different fixed values of the frequency detuning ∆ω: (a) ∆ω = 0.1δ2

and (b) ∆ω = δ2. The values of the system parameters are the same as in Figure 6.

boundary of the gap. Finally, above the forth critical
value of the coupling C ≥ C4, the discrete-like DOGB
{⇑ (↑ O ↓ O)}O

S , as well as the DOGB {⇑↓⇓ (↓ O ↑ O)}O
S

cannot be continued in frequency inside the gap, since
they bifurcate with each other above the upper boundary
of the gap ∆ω = 0 (see Fig. 6f). Consequently, for such
large coupling only continuous-like DGBs {⇑ (0O)}G

S can
exist in the gap.

Similar transitions from discrete- to continuous-like
breather solutions also occur for the continuation in cou-
pling of DGBs and DOGBs at a fixed value of the
frequency detuning ∆ω (19). In the lower half of the
gap (−2δ2 ≤ ∆ω ≤ −δ2) the transitions are smooth.
In the upper half of the gap the energy curve H(C)
bends over in a similar way as in Figure 6c, and the
discrete-like breather transforms into a continuous-like
one via an intermediate solution. Above the upper gap
boundary (∆ω > 0) the DOGBs {⇑ 0 ⇓ (↓ O ↑ O)}O

S
and {⇑↓⇓ (↓ O ↑ O)}O

S get involved in the transition be-
tween discrete- and continuous-like solutions (Fig. 7).
In the lower left part of Figure 7a the bifurcation loop
for these two solutions is shown, while the upper right
part shows the loop for transition from the continuous-
like (upper solid line) into the discrete-like (lower solid
line) DOGBs {⇑ (↑ O ↓ O)}O

S via the intermediate out-
gap breather (dashed line). At a certain critical ∆ω the
bifurcation point of the DOGBs {⇑ 0 ⇓ (↓ O ↑ O)}O

S and
{⇑↓⇓ (↓ O ↑ O)}O

S coincide with that of the continuous-
like and intermediate out-gap breathers. At higher fre-
quencies the continuous-like DOGB can be continued smo-
othly in coupling down to C = 0, with the coding sequence
{⇑ 0 ⇓ (↓ O ↑ O)}O

S (upper solid line in Fig. 7b), while the
discrete-like DOGB {⇑ (↑ O ↓ O)}O

S bifurcates with the
DOGB {⇑↓⇓ (↓ O ↑ O)}O

S (lower solid and dashed lines in
Fig. 7b, respectively). An analogous scenario will then be
repeated at higher frequencies, for the transition from a so-
lution with peaks of the upper band sub-field at n = Nc±3
to one with upper band sub-field peaks at n = Nc ± 5. In
Figure 7b one can see a bending of the H(C) curve for the

continuous-like solution at C ≈ 0.68, associated with this
subsequent transition.

A similar switching of the bifurcation scenario with
change of coupling was also observed for ‘phantom’
breathers associated with second-harmonic resonances in
monoatomic KG chains [39].

5.3 Bifurcations of DOGBs with different tails

As described above, gap breathers {⇑ (0O)}G
S gain non-

decaying tails with wave number q = π/2 when continued
into ‘normal’ DOGBs above the upper gap boundary, and
their energies rapidly grow. However, there exist also local-
ized breathers with frequencies above the linear spectrum
— ‘on-top’ breathers (DOTB), with exponentially decay-
ing tails of wave number q = π (for stationary solutions).
The simplest example is the single-site DOTB with coding
sequence {⇑ (0O)}O

S . Attempting a continuation of this so-
lution in frequency down to the linear spectrum, it bifur-
cates with another on-top breather {⇑↓ (O0)}O

S rather far
from the ‘top’ frequency ωu of linear waves (Fig. 8a, lowest
curves). Another DOTB {⇑↑ (O0)}O

S (three-site breather)
can be continued much further down in frequency, bi-
furcating with the DOTB {⇑↑ O ↑ (O0)}O

S close to the
point ω = ωu (Fig. 8a, middle curves). The slope of the
curve H(ωb) for the DOTB {⇑↑ (O0)}O

S is approximately
the same as for the DGB {⇑ (0O)}G

S . In that sense this on-
top breather, rather than the DOTB {⇑ (0O)}O

S , can be
considered as the ‘on-top counterpart’ of the gap breather
(however, this is true only for small coupling, see below).

Besides the ‘normal’ DOGBs, another type of out-gap
breather with tail wave number q = π/2 exists above the
gap — the DOGB {(O ↑ O ↓)}O

S (and its antisymmetric
counterpart {0(O ↑ O ↓)}O

A). The dependence H(ωb) for
the continuation in frequency of this DOGB at fixed cou-
pling C = 0.02 is shown in Figure 8a (dash-dotted line).
Originating from the linear wave with q = π/2 at the up-
per gap boundary, it represents a kink-like excitation of
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Fig. 8. Hamiltonian H (7) vs. frequency ωb for different solutions. Vertical lines show the boundaries of the upper branch of
the linear spectrum ω2 = 1.14, ωu ≈ 1.148. Curves in (b) show, from top to bottom: continuation DGB {⇑ (0O)}G

S → DOGB
{⇑ (↑ O ↓ O)}O

S , bifurcation loops for DOGBs with 1, 2, 4, 8 and 12 ‘defects’ (see text for explanation). δ2 = 0.1, C = 0.02,
N = 50.

‘light’ sites (‘phase domain wall’) accompanied by local-
ized excitation of ‘heavy’ sites at non-zero coupling, and
corresponds to the kink-like out-gap soliton in the contin-
uous limit (e.g. [7,29]). However, above a critical coupling
Ccr ≈ 0.188 the DOGB {(O ↑ O ↓)}O

S does not exist at
∆ω → 0, since being continued in frequency down towards
the upper gap boundary at fixed coupling C > Ccr, it bi-
furcates with the solution {⇓↓ (O ↓ O ↑)}O

S at ∆ω > 0.
Instead, at C > Ccr the solution {⇓ 0(O ↓ O ↑)}O

S can
be continued down to the upper gap boundary, corre-
sponding to the kink-like soliton in this regime. This is
similar to the switching of the coding sequence for the
continuous-like ‘normal’ DOGB from {⇑ (↑ O ↓ O)}O

S
to {⇑ 0 ⇓ (↓ O ↑ O)}O

S discussed in Section 5.2.
Apart from DOGBs with tail wave numbers q = π/2

and DOTBs with q = π, one can also construct DOGBs
with any other tail structure, if the chosen wave number
is allowed for the particular system size. As the coding se-
quences become complicated, we introduce a simplified no-
tation. Restricting to symmetric breather configurations
we omit the subscripts S, and likewise the superscripts O
will be omitted as all DOGBs are constructed at fre-
quencies above the gap. For DOGBs with frequencies in-
side the linear spectrum the upper band sub-field (‘light’
amplitudes) should have non-zero tails because of reso-
nances with linear waves. Therefore, the codes for ‘light’
amplitudes should be, generally, non-zero. Restricting to
DOGBs which are ‘single-site’ in the lower band sub-field,
all codes for ‘heavy’ sites are zero except for the central
excited site, and the codes for ‘heavy’ amplitudes can be
omitted. For example, the simplified coding sequence for a
DOGB {⇑ (0O)}O

S is [(0)], and for DOGB {⇑ (↑ O ↓ O)}O
S

is [(↑↓)] (we use different types of brackets to distinguish
normal and simplified coding sequences).

To understand the total bifurcation picture of DOGBs
with different tails, we construct new solutions by insert-
ing ‘defects’ into the tail structure of a DOGB [(↑↓)]. Con-
sidering this sequence as the ‘right’ one, we replace the
‘right’ code at some particular place k with a ‘wrong’ one

together with introducing an additional phase shift, i.e.
a change of the signs of all the subsequent codes (i.e. we
insert a defect into the ‘right’ coding sequence to obtain
a standing wave with wave number larger than q = π/2).
For instance, denoting the number of codes in the sim-
plified coding sequence as NL (i.e. the number of ‘light’
sites to the right of the breather center, e.g. NL = 13
if N = 50), the solution with one ‘defect’ at the posi-
tion k (in the simplified coding sequence, corresponding
to site n = Nc + 2k − 1) has the simplified coding se-
quence: [(ri)i=1,2,...,k−1, wk, (−ri)i=k+1,k+2,...,NL ]. Here ri
is the ‘right’ code at the ith position, and wk is a ‘wrong’
code (wk is ‘0’ or ‘↓’ if rk is ‘↑’, wk is ‘0’ or ‘↑’ if rk is ‘↓’).
A DOGB [0(↑↓)] is an example of a solution with a de-
fect at the first position, while a DOGB [↑↓↑↑ (↓↑)] has a
defect at the 4th postition. Similarly DOGBs with more
defects can be constructed. A single-site DOTB [(0)] can
be considered as a solution with NL ‘defects’.

We find, that being continued down in frequency
towards the linear spectrum, each solution with ‘defects’
bifurcates with a solution having the same number of ‘de-
fects’, with coding sequences differing only at the ‘de-
fects’ nearest to the center. For example, the DOGB
[↑↑↓↑ 0 ↓↓ (↑↓)] with three ‘defects’ at 2nd, 5th and 7th
positions bifurcates with the DOGB [↑ 0 ↓↑ 0 ↓↓ (↑↓)],
with a different type of ‘defect’ at the 2nd position. The
resulting bifurcation picture is shown in Figure 8b, where
bifurcation loops for solutions with 1, 2, 4, 8 and 12 ‘de-
fects’ are plotted in different greyscales, while the solid
black curve corresponds to the transition DGB {⇑ (0O)}G

S→ DOGB [(↑↓)]. Note that in Figure 8 NL = 13, and the
bifurcation loop for solutions with 12 ‘defects’ in Figure 8b
is the same as that for the DOTBs [↑ (0)] and [↑↑ (0)] in
Figure 8a.

Each bifurcation loop corresponding to a particular
number of ‘defects’ has a complex intrinsic structure, as
these ‘defects’ can be at different positions. For each num-
ber of defects one can find some ‘optimal’ configuration, so
that the solution with ‘defects’ placed on these ‘optimal’
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Fig. 9. The intrinsic structure of the bifurcation loop for the
DOGB with one ‘defect’ in Figure 8b. Dashed black, solid dark-
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with one ‘defect’ at 1st, 2nd, 3rd and 9th positions respectively.

positions can be continued further down in frequency than
all other solutions with the same number of ‘defects’. The
loops shown in Figure 8b represent such optimal configu-
rations. In Figure 9 the intrinsic structure of the bifurca-
tion loop for solutions with one ‘defect’ at 1st, 2nd, 3rd
and 9th (‘optimal’) positions, respectively, is shown.

Increasing the coupling, the bifurcation picture re-
mains qualitatively the same. However, the slope of the
curve H(ωb) for the DGB {⇑ (0O)}G

S changes, so that for
larger coupling, when the DGB has ‘continuous-like’ struc-
ture with upper-band sub-field peaks at n = Nc ± 3, its
‘on-top’ counterpart (with approximately the same slope
for H(ωb)) is the DOTB {⇑↑ O ↓ (O0)}O

S . Similar changes
of the DGB’s ‘on-top’ counterpart are expected for a fur-
ther increase of coupling, as the peaks of the upper-band
sub-field will move further away from the breather center.

The bifurcation scheme for out-gap breathers in Fig-
ure 8b is qualitatively similar to that for phonobreathers
with different tails resulting from second-harmonic res-
onances in monoatomic KG chains [39]. However, in the
modulated DNLS model out-gap breather tails apparently
always have non-zero asymptotes, and thus we found no
analogue to ‘phantom’ breathers [39] with vanishing tails.

5.4 Stability of out-gap breathers

We analyze the stability of DOGBs by continuation
in coupling at fixed frequency detuning (19), focusing
on the three pairs of most important solutions: ‘nor-
mal’ DOGBs {⇑ (↑ O ↓ O)}O

S , {0 ⇑ (↑ O ↓ O)}O
A, being

the smooth continuation of symmetric and antisymmet-
ric DGBs in frequency above the gap for small cou-
pling; DOTBs {⇑ (0O)}O

S , {0 ⇑ (0O)}O
A, being the fun-

damental ‘on-top’ breathers; and DOTBs {⇑↑ (O0)}O
S ,

{0 ⇑↑ (O0)}O
A, being the ‘on-top counterparts’ of DGBs

for small coupling. We fix the system size N = 242 and
gap parameter δ2 = 0.1.

5.4.1 ‘Normal’ DOGBs

In Figure 10 we show stability results for symmetric
discrete-like, intermediate, continuous-like, and anti-
symmetric out-gap breathers at frequency detuning
∆ω = 0.1δ2. (Note, that in ‘normal’ DOGBs the tail wave-
number is q = π/2, so according to (19) ∆ω = ωb −
ωo(π/2) ≡ ωb − ω2.) As for DGBs (Sect. 5.1), there are
two bands of extended eigenvalues with opposite Krein
signatures:

iω∓ =

{(
∆ω + 2δ2

)2 + 8C2 cos2(q)
2

± 1
2

√
(∆ω + 2δ2)4 + 16C2 cos2(q) (4δ4 −∆ω2)

} 1
2

,

(23)

with all wavenumbers q allowed for the particular system
size. But now the band {iω+} with positive Krein signa-
ture always has its lower boundary at zero. Moreover, as
for non-localized solutions Krein instabilities correspond-
ing to extended eigenmodes survive also for infinite sys-
tems (e.g. [27]), overlapping of the extended bands is more
essential for extended DOGBs than for localized DGBs.

Increasing the coupling, several localized modes bifur-
cate from the top of the band with κ = +1 (P1−P5
in Figs. 10a and 10d) and from the bottom of the band
with κ = −1 (N1 and N2 in Figs. 10a and 10d). Pen-
etrating the bands with opposite Krein signature, these
modes produce oscillatory instabilities. The N1 mode also
causes a real instability with an eigenvector of opposite
symmetry to the DOGB, colliding with its complex con-
jugate at zero (PN instability yielding ‘exchange of sta-
bility7’ between symmetric and antisymmetric DOGBs,
cf. Sect. 5.1). Similarly, the N2 mode causes a real insta-
bility with an eigenvector of the same symmetry as the
DOGB, in the regime of transition from discrete-like to
continuous-like solutions.

However, the behaviour of the localized modes at small
coupling is different for gap and out-gap breathers. For
symmetric DGBs and DOGBs, in the limit of small C
only two modes can stay localized: P1 and P2, associated
with symmetric and antisymmetric oscillations on the sites
closest to the breather center. In the case of DOGBs, in
contrast to DGBs, there is no threshold ∆ωcr, and these
two eigenvalues bifurcate from the extended band immedi-
ately when C becomes non-zero, for all DOGB frequencies
(see Appendix A, Tab. 1). The differences between each
of the P1 and P2 eigenvalues and the top boundary of
the extended band are in this case proportional to

√
C at

small values of C (see Fig. 10 and Tab. 1; compare with
C2-dependence for DGBs as discussed in Sect. 5.1)

For antisymmetric ‘normal’ DOGB {0 ⇑ (↑ O ↓ O)}O
A

an additional mode N0 appears (see Fig. 11), local-
ized on the ‘central’ site Nc which is the only ‘light’
site with code ‘0’. Note, that in an antisymmetric DGB

7 Krein instabilities generally also exist here, see Figure 10.
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Fig. 10. Imaginary parts of eigenvalues iωe of (12) for symmetric discrete-like (a), intermediate (b), continuous-like (c) and
antisymmetric (d) ‘normal’ DOGBs at frequency deviation (19) ∆ω = 0.1δ2. Light-grey crosses (dark-grey triangles) correspond
to eigenvalues with κ = +1 (κ = −1), and black stars to unstable eigenvalues; (a–c) correspond to upper right loop in Figure 7a.
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Fig. 11. Blow-up of a regime close to the origin of Figure 10d.

{0 ⇑ (0O)}G
A all ‘light’ sites have zero codes, therefore

there is no such localized mode for breather frequencies
inside the gap.

Another important difference between antisymmetric
‘normal’ DOGBs and DGBs is, that while the latter always
have a real instability at small coupling (see Sect. 5.1), the
former are always stable in a small interval of C: [0, C0]

(see Fig. 11). A localized mode P0, with eigenvector of
opposite symmetry to the DOGB, now bifurcates from
the upper boundary of the positive Krein signature band,
similarly to the P1 and P2 modes. The eigenfrequency
is proportional to C for small C (see Tab. 1, eigenmode
(P0, A,O)), and the eigenvector for C → 0 involves os-
cillations not only in the ‘excited’ ‘heavy’ sites, but also
in the subsequent ‘light’ sites. At a certain non-zero value
of C it collides with the N0 mode producing an oscilla-
tory instability, associated with a resonance between os-
cillations in the central ‘light’ site and symmetric coupled
oscillations in the two neighboring ‘heavy’ sites.

The N1 localized mode, which is responsible for the
‘exchange of stability’ between antisymmetric and sym-
metric ‘normal’ DOGBs, now appears only at large cou-
pling, in the continuous-like regime.

5.4.2 ‘On-top’ DOGBs

As indicated in Section 5.3, ‘on-top’ breathers cannot
be continued in frequency down to the linear spectrum8.

8 We here only discuss DOTBs with nonzero oscillations at
‘heavy’ sites as C → 0. There are also solutions with nonzero
codes only at ‘light’ sites, e.g. {↑ (O0)}O

S , which can be con-
tinued down to the linear spectrum.
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Fig. 12. Imaginary parts of eigenvalues iωe of (12) for continuation in coupling of DOTBs {⇑ (0O)}O
S (a), {0 ⇑ (0O)}O

A (b),
{⇑↑ (O0)}O

S (c), {0 ⇑↑ (O0)}O
A (d) at frequency deviation (19) ∆ω = δ2 (note, that q = π for DOTBs). Light-grey crosses

(dark-grey triangles) correspond to eigenvalues with κ = +1 (κ = −1), and black stars correspond to unstable eigenvalues.

Analogously they cannot be continued in coupling up to
arbitrary values at fixed frequency detuning ∆ω, since
they bifurcate with other DOTBs in the same way as
when continued in frequency at fixed C (see Fig. 8a). By
contrast, the DOTBs can be smoothly continued by si-
multaneously increasing the frequency detuning and the
coupling at fixed value of the ratio ∆ω/C. This corre-
sponds to the continuation towards the ‘non-modulated’
limit δ2/C → 0 (see Eq. (17)), i.e. towards usual ‘on-top’
breathers in homogeneous media. Only for δ2/C = 0 the
smooth continuation in coupling at fixed frequency detun-
ing can be performed; at any non-zero δ2/C the exact limit
∆ω/C → 0 cannot be reached because of the bifurcations.

In Figure 12 results of continuation in coupling
of DOTBs {⇑ (0O)}O

S , {0 ⇑ (0O)}O
A, {⇑↑ (O0)}O

S
and {0 ⇑↑ (O0)}O

A at fixed frequency detuning are shown.
Each DOTB is continued from C = 0 up to the bifurca-
tion point, where it bifurcates with DOTBs {⇑↓ (O0)}O

S ,
{0 ⇑↓ (O0)}O

A, {⇑↑ O ↑ (O0)}O
S and {0 ⇑↑ O ↑ (O0)}O

A, re-
spectively. For all DOTBs the extended eigenvalues have
the same (negative) Krein signature. Still they can be di-
vided into two bands (‘upper’ and ‘lower’):

iωup = ωb − ωo(q), iωlo = ωb − ωa(q), (24)

where ωo,a(q) are frequencies from the upper and lower
bands of the linear spectrum (4).

Close to the bifurcation point, all the described
DOTBs possess two real instabilities with symmetric
and antisymmetric eigenvectors, respectively. These in-
stabilities are similar to those produced by the N1 and
N2 modes in the case of DGBs and ‘normal’ DOGBs in
the region of transition from discrete- to continuous-like
solutions.

Like ‘normal’ antisymmetric DOGBs, antisymmetric
DOTBs have no instabilities at small coupling, so for
each pair of symmetric and antisymmetric DOTBs there is
an interval [0, C0] of simultaneous stability. The localized
mode associated with symmetric coupled oscillations in
the two ‘excited’ ‘heavy’ sites (similar to the P0 mode for a
‘normal’ antisymmetric DOGB) bifurcates from zero and,
having κ > 0, collides with another localized mode associ-
ated with oscillations in the ‘central’ ‘light’ site (similar to
the N0 mode). This results in an oscillatory instability of
antisymmetric DOTBs (Figs. 12b and 12d). The DOTBs
{⇑↑ (O0)}O

S and {0 ⇑↑ (O0)}O
A have two additional local-

ized modes with κ > 0, similar to the P1 and P2 modes
described in Section 5.4.1. Penetrating the extended bands
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or colliding with other localized modes (with κ < 0) they
also produce oscillatory instabilities (Figs. 12c and 12d).

6 Conclusions

We have investigated the linear stability properties of dis-
crete gap and out-gap breathers in the modulated DNLS
model, which in particular describes electromagnetic wave
propagation in an array of weakly coupled optical wave-
guides of different widths. The coupling constant was var-
ied from C = 0 (anti-continuous limit) up to values, at
which the localization length of the breather becomes
much larger than the array constant (continuous limit).

Different types of oscillatory and real instabilities of
DGBs were revealed, similar to those described for DGBs
in the diatomic Klein-Gordon model [17]. However, in con-
trast to the KG case, DGBs in infinite DNLS chains do
not possess any oscillatory instability when the breather
frequency is in the lower half of the gap.

The transition from gap to out-gap breathers was stud-
ied by varying the breather frequency at different fixed
values of the coupling. Such transitions were found to oc-
cur in different ways, depending on the value of the cou-
pling, and a relation to the transition from discrete- to
continuous-like breathers (described earlier for DGBs in
the diatomic KG model [17]) was revealed.

Discrete out-gap breathers with tails of different wave
numbers were investigated, and a general bifurcation
picture described. DOGBs were shown to, generally,
possess the same types of oscillatory and real instabili-
ties as DGBs. Still, there are important differences be-
tween stability properties of DGBs and DOGBs. Unlike
antisymmetric DGBs, antisymmetric DOGBs are linearly
stable for small coupling, so there is an interval in cou-
pling [0, C0] where symmetric and antisymmetric DOGBs
are stable simultaneously. Also, since DOGBs generally
are non-localized, they possess strong oscillatory instabil-
ities associated with resonances between extended lattice
modes of the upper- and lower-band sub-fields. For DGBs
such instabilities do not survive in the limit of infinite
chain.

The process of breather frequency penetration into the
linear spectrum and bifurcation of a DGB into a DOGB
was found to have many qualitative similarities with the
breather second harmonic penetration into the linear spec-
trum and formation of ‘phonobreathers’ with non-zero
tails, discussed for a monoatomic KG chain in [39]. How-
ever, we found no analogue to ‘phantom’ breathers with
vanishing tails, since all DOGBs with tails of different
wave numbers apparently are non-localized at frequencies
inside the linear spectrum. The question about the exis-
tence of such localized excitations inside the linear wave
spectrum in modulated models is thus still unresolved.

Another interesting and important question, which we
address for future investigations, concerns the possibility
of finding exact moving gap and out-gap breathers. As we
have shown here, DGBs and DOGBs in the modulated
DNLS model exhibit the ‘exchange of stability’ between

symmetric and antisymmetric modes, and thus a consider-
ably increased mobility of these excitations is expected for
parameter values close to the stability exchange point [5].
We hope that our results will stimulate experimental ac-
tivity to directly observe this phenomenon, e.g. in coupled
waveguide arrays.

We recently demonstrated such DGB mobility in the
diatomic KG chain [17], and connected it with a vanish-
ing of the PN barrier. However, the determination of the
PN potential, and the PN barrier as the energy differ-
ence between symmetric and antisymmetric breathers, is
not unambiguous in the KG model, since for fixed values
of the system parameters there exist continuous families
of symmetric and antisymmetric DBs with different fre-
quencies. In the modulated DNLS model, the existence
of an additional conserved quantity, the excitation norm,
makes it natural to define the PN barrier as the differ-
ence between energies of symmetric and antisymmetric
DBs with the same norm [42]. Thus it is of interest to
study more in details the ‘exchange of stability’ in the
modulated DNLS model, and to look for exact moving
breathers in this regime.

Another interesting effect, which also should be exper-
imentally observable, arises as a consequence of the exis-
tence of DGB internal modes with frequencies above the
continuous spectrum (e.g. P1−P5 in Fig. 3). Since then
also all multiples of the mode frequency will lie outside the
continuous spectrum, similar arguments as in [43] prove
the existence of exact localized quasiperiodic gap breathers,
with two, generally incommensurate, frequencies. These
solutions are characterized by persistent large-amplitude
internal intensity oscillations. It is particularly interest-
ing to note, that since e.g. the P1 mode of the symmetric
DGB is always above the continuous spectrum in the lower
half of the gap when −1.56 � ∆ω/δ2 < −1, quasiperi-
odic solutions bifurcating from this mode should exist in
continuous families, arbitrarily close as well to the anti-
continuous as to the continuous limit. The properties of
such solutions, which cannot exist in KG models, will be
discussed elsewhere.

We acknowledge support from the Royal Swedish Academy
of Sciences and “Knut och Alice Wallenbergs jubileumsfond”.
A.V.G. acknowledges support from the Swedish Institute. M.J.
acknowledges support from the Swedish Research Council.

Appendix A: Calculation of localized modes
at small C

For localized eigenmodes at small C, the eigenvalue prob-
lem (15) can be simplified. Indeed, at small coupling
these eigenmodes are mainly localized on a few cen-
tral sites (if the corresponding eigenvalues lie inside the
extended band, these eigenmodes are not purely local-
ized, but the central site amplitudes are much larger
than the tails). In this case one can put (a, b)n ≡ 0 for
|n−Nc| ≥ Nε, where Nε characterizes the localization
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length of an eigenmode. Moreover, using C as a small pa-
rameter, one can obtain approximate expressions for the
central site amplitudes of the unperturbed solution φ

(0)
n ,

for DGB {⇑ (0O)}G
S :

φ2
Nc

= 2δ2 +∆ω − 2
∆ω

C2 + O (C3
)
,

φ2
Nc±1 =

2δ2 +∆ω

∆ω2
C2 + O (C3

)
, (25)

DGB {0 ⇑ (0O)}G
A:

φ2
Nc

≡ 0,

φ2
Nc±1 = 2δ2 +∆ω − 1

∆ω
C2 + O (C3

)
,

φ2
Nc±2 =

2δ2 +∆ω

∆ω2
C2 + O (C3

)
, (26)

DOGB {⇑ (↑ O ↓ O)}O
S :

φ2
Nc

= 2δ2 +∆ω + 2

√
∆ω

2δ2 +∆ω
C + O (C2

)
,

φ2
Nc±1 = ∆ω + 2

√
2δ2 +∆ω

∆ω
C + O (C2

)
, (27)

and DOGB {0 ⇑ (↑ O ↓ O)}O
A:

φ2
Nc

≡ 0,

φ2
Nc±1 = 2δ2 +∆ω +

√
∆ω

2δ2 +∆ω
C + O (C2

)
,

φ2
Nc±2 = ∆ω +

√
2δ2 +∆ω

∆ω
C + O (C2

)
. (28)

Note that ∆ω < 0 (∆ω > 0) for gap (out-gap) breathers.
Thus, in the case of a symmetric DGB {⇑ (0O)}G

S ,
the P1 mode is mainly localized on the central ‘heavy’
site with n = Nc, the two neighboring ‘light’ sites with
n = Nc ± 1, and the subsequent pair of ‘heavy’ sites with
n = Nc±2. Therefore, for small C one can put (a, b)n ≡ 0
when |n−Nc| ≥ 3 in equations (15). Substituting the
approximate breather solution (25) into (15) and using
the symmetry of the P1 mode: (a, b)Nc−i = (a, b)Nc+i, we
obtain the corresponding eigenfrequency as

ω{P1,S,G}
e = −∆ω +

2C2

∆ω2

(
4δ2 +∆ω

)
+ O (C3

)
. (29)

Here the superscript marks the type of mode (P1 or P2),
the symmetry of the breather φ(0)

n (S [A] for symmet-
ric [antisymmetric] breathers), and the type of breather
(G and O for gap and out-gap breathers, respectively).

Analogously, for the antisymmetric P2 mode we have:

ω{P2,S,G}
e =

−∆ω +
C2
(
8δ4 + 4δ2∆ω +∆ω2

)
2δ2∆ω2

+ O (C3
)
. (30)

To see if a particular eigenmode is localized or not at
small C, i.e. whether the corresponding eigenvalue lies in-
side or outside the extended band, we check the difference
between the eigenvalue and the band edge ω{max,G}

+ (20):

ω
{max,G}
+ = ωo(π) − ωb = −∆ω − δ2 +

√
δ4 + 4C2, (31)

from which it bifurcates (see Fig. 3). This yields for the
P1 mode

ω{P1,S,G}
e − ω

{max,G}
+ =

2C2

∆ω2δ2
(
4δ4 + δ2∆ω −∆ω2

)
+ O (C3

)
. (32)

Consequently, when the frequency detuning of a symmet-
ric DGB is above the critical value ∆ω > ∆ω

{P1,S,G}
cr ≈

−1.56δ2, the P1 eigenmode is localized at any non-zero
value of C. By contrast, when ∆ω ≤ ∆ω

{P1,S,G}
cr , the

P1 eigenmode is not localized at small values of C.
Similar results are obtained for the P2 mode:

ω{P2,S,G}
e − ω

{max,G}
+ =

C2

2∆ω2δ2
(
8δ4 + 4δ2∆ω − 3∆ω2

)
+ O (C3

)
. (33)

The critical value of the frequency detuning for this mode
is equal to ∆ω{P2,S,G}

cr ≈ −1.1δ2.
Using the same technique, expressions for the eigen-

values and eigenvectors corresponding to localized modes
at small coupling can be obtained for antisymmetric DGB
{0 ⇑ (0O)}G

A, and for out-gap breathers {⇑ (↑ O ↓ O)}O
S ,

{0 ⇑ (↑ O ↓ O)}O
A. The results are presented in Table 1,

where for each eigenmode the schematic eigenvector and
eigenvalue are given at the lowest significant order of C,
together with the approximate value of the critical fre-
quency detuning ∆ωcr, above which the mode is local-
ized at small C. Note in particular that the antisymmet-
ric DGB {0 ⇑ (0O)}G

A has an imaginary eigenfrequency
corresponding to the N1 mode, and thus it is unstable for
small C. All other eigenfrequencies are real, proving the
linear stability of the other three solutions for small C.
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